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SUMMARY

A theoretical investigation has been made to determine the effect
of automatic stabilizatlon on the lateral oscillatory stability of a
hypothetical supersonic airplane. The investigatlion included an automatic
pllot sensitive to a displacement in either yaw or. roll and an auto-—
matig pilot sensitive to either the yawing or rolling angular velocity.
The calculations were made for each type of automatic pllot acting inde—
pendently of the others. An i1dealized control system wlithout lag was
assumed for the calculations.

The results of the investigation indlcated that all the automatic
pilots improved the stability of the original unstable short—period oscil-—
lation. The only cne of the automatic pilots which resulted in an oscil-
lation that satisfled the NACA and military criterions for satisfactory
damping—period relationship, however, is an automatic pilot sensitive to
the yawing angular velocity and geared to the rudder so that rudder
control is applied in proportlon to the angular veloclty.

INTRODUCTION

The lateral—stability boundaries calculated in reference 1 indlcated
that for high-speed alrplanes designed with high wing loadings and swept-
back wings more dlrectional stability is required for oscillatory
stability than for an airplane with a straight wing and lower wing loading.
Subsequent lateral stability investigations (references 2 and 3) showed
that the directional stability required for oscillatory stebility may
be reduced if the principal longltudinal axis of the airplane is inclined
ebove thse flight path. Additional, unpublished, dynamic—stability calcu—
lations on the effect of an automatic pilot which gives control pro— -
portional to the angular displacement in either yaw or roll or an automatic
pilot which glves control proportional to either the yawing or rolling
angular velocity also indicated that the use of the automatic pilot permits
a reduction in the directional stability required for oscillatory stability.
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These calculatlons for the effect of the automatic pllot were made at

the time the theoretical investigation reported 1n reference 3 was carried
out, but the results of the calculations were not published then because
the stabllizing effect that would be obtained by inclining the principal
axis above the flight path was belleved to be sufficient to obviate the
necesslty of Imnstalling an automatic pllot. Recent lateral—stability
analyses of several ailrplanes have shown, however, that the osclllatory
stability is not satisfactory even when the principal axis is inclined
gbove the flight path. The use of an automatic pilot therefore offers
another means for improving the osclillatory stebility.

SYMBOLS AND COEFFICIENTS

d angle of roll, radians

¥ angle of yew, radians

B angle of sideslip, radians (v/V)

r,V yawing angular velocity, radians per second (d¥/dt)

p,¢ rolling angular velocity, radiane per second (d¢/dt)

v sideslip velocity along the Y—axis, feet per second

v airspeed, feet per second

o mass density of air, slugs per cubic foot

a dynamic pressure, pounds per square foot,<%pVé>

b wing span, feet

S wing area, square feet

W welght of airplane, pounds

m mass of airplane, slugs (W/g)

g acceleration due to gravity, feet per second per second

Hp relative—density factor (m/pSb)

1 inclination of principal longitudinal axis of airplane
with respect to flight path, positive when principal
axis is above flight path at the nose, degrves

Y angle of flight path to horizontael axis, positive in a
climb, degrees

kx, redius of gyration in roll about principal longitudinal

axlis, feet
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KXQ

radius of gyration in yaw about principal vertical axis,
feet

nondimensional radius of gyration in roll about principal
longitudinal axis (%Xq/€>

nondimensional radius of gyration in yaw about principal

vertical axis (kzo/'b> .

nondimensional radius of gyration in roll asbout longi-—
tudinal stabllity axis
(JKxoacosaq + Kzoesinzn>

nondimensional radius of gyration 1n yaw about vertical
stablility axls
(JKZO-Qcosa'q + KxoasinQn

nondimensional product—of—inertias paramster

((KZOQ - Kxoe)sin n cos n)

trim 11Pt coefficient <?L{§§1J%)

rolling-moment coefficient <k°111n§bm°mﬂnﬁ>
qs

yawlng—-moment coefficlent (Ya-w‘in& S{l)loment>
@

lateral-force coefficient (%aterZé f°r°9)
effective—dihedral derivative, rate of change of rolling—
moment coefflcient with angle of sideslig per radian

(3C7/38)

directional—stabillty derivative, rate of change of
yewing-moment coefficlent with angle of sideslip, per
radian (dCn/dB) ‘

lateral~force derivative, rate of change of lateral—force
coefficient with angle of sildesllp, per radian

(3cy/aB)

damping—in—-yaw derivative due to the alrplane, rate of
change of yawing-moment coefficient with yawing—

angular-velocity factor, per radian (5011/35%)
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damping—in—yaw derlvative due to the automatic pilot

rate of change of yawing-moment coefficlent with rolling—

angular—-velocity factor, per radian <Bcn/8g?—,>

damping—in—roll derivative due to the airplane, rate of
change of rolling-moment coefficient with rolling-—

angular—velocity factor, per radien (807/8%)

damping—in—roll derivative due to the automatic pilot

rate of change of lateral—force coefficient with rolling—

angular—velocity factor per radian <BCY/622%>

rate of change of lateral—force coefflclent with yawlng-—
angular—veloclty factor per radiean (BW/B%)

rate of change of rolling-moment coefficlent with yawing-—

angular—velocity factor, per radian <BC7, B;—S)

rate of change of yawing-moment coefficient with angle

of yaw, per radian

rate of change of ro
of” yaw, per radian

(59

oV

30,

oV

ment coefficlent with angle

rate of change of lateral—force coefficient with angle

of yaw, per radian

30y
3

rate of change of yawin

of 1:011, per radian

o9,

ment coefficient with angle

rate of change of rolling-moment coefficient with angle

)

of roll, per radlan

a
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Ba,

gy =¥ «¥

L%{

Q/
AN

ct

rate of change of

lat %l—force coe:fficieﬁt with angle

of roll, per radian %)

rate of change of
deflectlion, per

rate of change of
deflectian, per

rate of change of
deflection, per

rate of change of
deflection, per

rate of change of
deflection, per

rate of change of
deflectlion, per

yawing-moment coefficient with rudder

radlan
T

rolling-moment coefficient with rudder

=

latera.l—gorce <coefficlent with rudder
Cy

radlan|{ —=

By

yawing-moment coeffliclent with alleron

radian —Cll-
PBg,

ro t coefflcient with aileron
radlian =1
353

lateral—gorce coefficient with alleron
radian —CY

B

control—gearing ratlo, rate of change of rudder deflec—
tlon with angle of yaw

control-gearing ratlo, rate of change of alleron deflec—
tion with angle of roll

cantrol—gearing ratio, rate of change of rudder deflec—
tlon wilth yawlng angular veloclity

control-gearing ratio, rate of change of alleron deflec—
tion with rolling angular veloclty

time, seconds

nondimensional tims parsmeter based on spen (Vt/b)

differential operator 4.

S

dsy,

[ o~ e o e o _—— -
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Ry Routh's discriminant for a quintic equation

Ro Routh's dlscriminant for a quartic equation

P period of osclllation, seconds

Tl/é time for amplitude of oscillation to change by factor

of 2 (positive value indicates a decrease to half
amplitude, negative value indlicates an increase to
double amplitude)

Cl/é number of c¢ycles required for amplitude of periodic
mode to change by factor of 2 (positive value indicates
a decrease to half amplitude; negative value indicates
an increase to double amplitude)

A,B8,C,D,E,F coefficients of lateral-stdabillity equations
SCOPE OF INVESTIGATTION

The osclllatory—stabllity boundaries were calculated for a hypo—
thetical alrplane to show the effect on the oscillatory stability of an
automatic pilot which gives control proportiocnal to the angular displace-—
ment in either yaw or roll or an automatic pllot which gives control
proportional to elther the yawlng or rolling angular velocity. The calcu—
lations were made for each type of automatic pllot acting independently
of the others. An ideallzed proportional control system in which lag
effects were neglected was assumed for the calculations, The relation—
ship of the calculated boundaries to the motion of the alrcraft was
investigated by determining the period and damping of the oscillatory
mode and the damping of the aperlodic mode from the roots of the charac—
teristic lateral—stebllity equation.

The mass and aerodynamic parameters of the hypothetical alrplene
in the crulsing condition are presented in teble I. The results of the
calculations presented are based on the assumption that the product of
inertia is zero.
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EQUATTONS OF MOTION

The linearized equations of motion, referred to stability axes,
for thé condition of controls fixed are:

Rolling ' :

>
2pb(K12Db2¢ + KxgDp ‘*’) = CygB + %CzprQ‘ + 501, Dp ¥

Yawing
2up (K2 Do ¥+ KxgPy #) = Gagh + 300 Do + 2o Doy S
Sideslipping
21(DbB + Db ¥) = Oygh + 30y Do + Orf + 30y, Dy,
+ (GL tan Ny )

AB AS 8
When @oe P 18 substituted for @, yoe P for ¥, and Byo P

for B 1n the equations written in determinant form, ) must be a root
of the stabllity equation

AreBm3+olimi+E=o0

where

A= 8ub3(szKzg - sze)
B =-2u,2(BRx Ky Oy + K Gy + K2201P - 2Kx220YB ~ Bxz01,, ~ Fxzlay)

¢ = up(KxCn,Orp + HenEx Cng + Kz"C,07g + 50n,C1p, — Kxz01,C1p
2

~ Eg°Cy, Ong + Exz0y,C1p)
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D=- %CnTCzPCYB = MpC1,Cnpg + i‘canZrCYB + Hpln C1g + 2ub0rKxz0lng
- 2“bCI}KzeCzB - QPbKXECnBCL tan y + 2upRxgCy4Cr tan 7 + %CzanBCYr

1
- 'll;cnpclﬁc’i'r ~ 301Cnglrp ¥ izcnrclﬁc’fp

= Ju o - o5y ) 05 07 (oo — o)

If an automatic pilot sensitlve to a dlsplacement in yaw 1s
installed in the ailrplane and rudder control is applied in proportion to
the displacement, the stabllity derivatives Cn\y: CW’ and CYIP‘ are

introduced into equations (1). These derivatives will be functions
of CDSI.’ Clsr’ and CYSI-’ respectively, and of the control-gearing

OBy
ratio S-?; that 1s,

%oy~ %, 5y

%,
5}

CZ =Czr§1;-

¥

and aar

GY-q, = C'Yar W

Normally for present-day airplanes, C15 and CY8 are msmall;
r r

equations (1) will therefore be simplified by neglecting the terms
involving Cyy and CYx}r' If Cpy &appears in equations (1), the

stabllity equatlon becomes
MO +BAF+ O3+ D2+ L+ F =0

where the following terme are added to the terms of the coefficients
presented previously:

for C o
— iy Ky Cay

for D o)
C, C. +2u C
p'b lp DW bKX CYB Ilw
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for B N 1 ’ .
- QCZPCYBCD‘J; + §CYPCZBCD.W

for P
C
CI. ZBCD'\V

If the automatic pilot is made sensitive to a displacement in roll
and 1f alleron control is applied in proportion to the displacement, the
derivatives Cz¢, Cn¢, and CY¢ are introduced into equations (1). These

derivatives will be functions of Cz5a, Cnﬁa’ and CYSa’ respectively,

and of the control—gearing ratio ééé. The derivative Cpg and Cyy
a a

were assumed to be small; therefore, the derivatives. Cn¢ and CY¢ will
be neglected and only the derivative CZ¢ wlll be taken iInto account in

equations (1). The coefficilents of the stability equatlon will then
include the following additional terms:

for C

— by 2R 20,

¢
for D 5
kpCn, Crg + Bupkz Cyglay
for B 1 1
~ 5%, 0019 — 2Hplnglig + 507CngCig

for 7

Crtan 7 Cnglryg

For the cases of the automatlc pilot designed to give control pro—
portional to the yawing or rolling angular velocity, only the derivatives
for damping in yaw and roll Cnr and CZP were assumed to be effectively

increased. Actually, the derivatlves Czr, CY?’ Cnp, and CYP are

affected by this type of automatic pilot. . The effect of the automatic
pllot on Czr, Cyf, Cnp: and CYP’ however, was neglected because these

derivatives are functions of CZSr’ CYBr’ Cnsa, and CYaa’ respectively,

all of which are normally small for present—day alrplanes. The deriva—

tive Cnr was effectively increased when the rudder was assumed deflected

T s e — S ——— e g A e > o o e =
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in proportion to the yawing angular velocity, whereas C;_  was effect—
P

ively increased when the aileron was assumed deflected in proportion
to the rolling angular velocity. The expressions for Cnr and CZP

due to the automatic pilot are

&
H
|3

80, = Oug

r -
and

¥ ¥
3

ACzp = Ci

Q/
A S

8

-

RESULTS AND DISCUSSION

JFigure 1 clearly shows that the probable range of CnB, CzB combi—

nations for the hypothetical high-speed alrplane is located almost
entlrely in the oscillatorily unstable region. This boundary represents
the case in which the principal longltudinael axis is alined with the
flight path; therefore, the product of inertia 18 zero. The effect of
antomatic stebillization on the neutral—oscillatory-stability boundary is
presented in figures 2 to 5. In each flgure the ordinate is the
directional-stability derivative OCng and the abscissa is the stability
derivative introduced by the automatic pllot. The curves on each figure
represent three different values of the effective—dihedral derivative CZB.

The control—gearing ratio is also plotted as abscissa in figures 2 to 5
to indicate the relation between the control-gearing ratlo and the
stebility derivative introduced by the automatic pilot. The control—

gearing ratios By Bg By and Pa were calculated on the assumption

o T 3¢ oy >
that ) .

Cpg = ~0-1

‘Czaa = —O-l

Automatic Pilot Sensitive to Displacement in Yaw

If the automatic pilot is sensitive to a displacement in yaw and
rudder control is applied in proportion to the displacement, the deriva—
tive Cn1¥ is introduced into the equations of motion. Ths lateral—

8tability equation now becomes a quintié_equation as shown in the previous
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Section entitled "Equations of Motion". The necessary and sufficient
conditions for complete stability for a system which results in a quintic
stabillity equation are derived in reference 4 and are also presented in
reference 5. A simple derivation of the necessary and sufficient condi-
tions for neutrel osclllatory stability and for complete stability is
given in the appendix. The necessary and sufficient conditions for
neutral oscillatory stability are that

R, = (BC — AD)(DE — CF) — (BE — AF)2 = 0

and that BE — AF and BC — AD are of the same sign. The necessary
and sufficient conditions for complete stability are that the coeffi-
cients A, B, D, and F be positive, R; >0, and BE — AF > O.

Figures 2(a) to 2(c) show the neutral-—oscillatory—staebility boundary
Ry = g and the curve BE — AF = 0 plotted as a function of CnB and an
or S\lf—r for Cyg = —0.10, —0.30, and —0.50, respectively. On the shaded
side of BE — AF = 0, the airplane has at least one mode of motion which
ig unetable. The significance of the boundary R = O located on the
shaded side of BE — AF = 0 1B still valid; that is, a stable oscilla-
tion becomes unstable upon crossing the boundary. A clearer relationship
between the boundary Rj = O and the stabillity of the alirplane motlon
may be obtained from a study of the damping and the period of the oscilla—
tion and the damping of the aperiodic modes obtalned from the roots of
the quintic lateral-stabllity equation. The results are presented in
teble IT(a) for the case of Cig = ~0.1 at Cpg = 0.15 and Cpg = 0.55

for several values of Cp . For point A in figure 2(a), which corre—
sponds to the point at the values of CZB = ~0.1, CnB = 0.15,

and Cn¢.= 0, the roots of the stabllity equation indicate an unstable

short—period oscillation, two subsiding aperiodic modes, and a zero root.
The zero root means that the alrplane is insemnsitlive to displacements 1in
yaw. As an is increased negatively from point A to point B, a stable

long—period oscillation is introduced in addition to the unstable short—
period oscillation and one subsiding aperiodic mode. Passing through
the boundary Ry = 0, from polnt B to point C, causes the stable long—
period oscillation to becoms unstable, but does not appreciably affect
+the other modes of motion. Two unstable oscillatory modes of motion now
exis;. As an_ is further lncreased negatively to point D, the insta—

bility of the short—period oscillation is reduced; whereas the instability
of the long;period oscillation incrsases and its pgriod is shortened.
Crossing through the boundary R; = O +to point E causes the short—period
oscillation to become stable; however, as an continues to increase

negatively, the damping of the shori—period oscillation does not lmprove
sufficiently to meet criterions for satisfactory dynamic stabllity (as
described subsequently). This conclusion for large negative values .

e ——
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of Cn\!,, where cross—coupling effecte are negligible, could be checked by
consaidering Cnllf - CnB to be the spring constent in the mass-spring dashpot
system as expressed by the one-~degree—of-freedom equation in yaw

[ 212082 ~ 300, Db = (Cn = Cag ) |¥ = 0

An increase in the comstant term Cn-q,» - CnB of the egquatlion reduces the
period of the osclllation, but does not affect the damping.

The results presented in table II(a) for C-,,B = -0.1 and Cng = 0.55

when used in conjunction with figure 2(a) indicate that upon crossing
through the boundary Rj = 0 +the long-period oscillation becomes unsteble.

As Cp, 18 increased megatively, both the damping and the perlod of the
short—period oscillation vary slightly and in such manner that the number
of cycles required to damp to half amplitude Cg /2 18 approximately

constant. With increasingly negative values for Cj ¥ the long—period
osclllation becomes more unstable and its period is reduced.

The results of these calculations for the hypothetical alrplane,
therefore, indicate that an automatic pilot sensitive to a dlsplacement

in yaw does not substantially improve the stabillty of the short-period
oscillation.

Automatic Pilo-l-; Sensitive to Displacement.in Roll

If the automatic pllot is semnsitlive to a displacement in roll and
alleron cantrol is applied In proportion to the displacement, the
derivative Cz¢ is introduced into the equations of motion. In the

present analysis, level flight is assumed or 7 = 0° and the stability
equation is, therefore, a quartic. The necessary and sufficient condi-
tlons for neutral oscillatory stabllity are that

Ro = BCD — AD? — B°E = 0

and that the coefficients B and D are of the same sign (reference 6).

The neutral-oscillatory—stebility boundary Ro = O 18 presented
in figure 3 for CzB = -0.,10, —-0.30, and —-0.50. The complete curves
of Rp =0 for Cy, =—0.30 and -0.50, however, are not shown in

figure 3. Actually, the complete curves for these values of 07’5 are
simllar in shape to the curve for CIB = —0.10 and Intersect the line
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of CZ¢ =0 at values of CnB greater than those plotted in figure 3.

Thes boundaries Rp = 0 1n figure 3 indicate that when the oscillation
is unstable for CZ¢ = 0, osclllatory stability is obtained as CZ¢

exceeds the value corresponding to a point on the boundary Ro = O.
If the oscillation is stable at Cz¢ = 0, oscillatory instebility will

occur for a limlted range of values of Cz¢ a8 prescribed by the
boundary Rp = 0. Further negative increases in C1¢, however, will again

result in oscillatory stabllity. The damping and perlod relationship of
the oscillatory modes for Czﬁ =-0.10 and QnB = 0.15 and 0.45 are

presented in table IT(b). For point A in figure 3, which corresponds to
the polnt at the values of CnB = 0,15 and Cz¢ = 0, the roots of the

stabi1l1ty equatlion indicate an unsitable shori—period oscillation and two
subsiding aperiodic modes. As Cz¢ 18 increased negatively to polnt B,

the two subsiding modes comblne to form a stable short—period oscillation.
Between polnts A and B, the boundary for two equal roots occurs, beyond
which two oscillations exist (reference 6). Upon passing through this
boundary of equal roots, the pericd of the newly formed oscillation is
very long, but it rapidly decreases as indicated by the results of the
calculations at point B where the perlod is approximately L peconds.
Crossing through the boundary Rp = 0, from point B to point C, causes

the original oscillation to become stable. As CZ¢ cantinues to increase
negatively, the period of one of the oscillations remains constant and
its damping decreases slightly whereas the period-of the other oscillation

decreages and its damping increases slightly. For both oscillations, the
nunber of cycles required to damp to half amplitude 01/2 increases

as Cz¢ increases. For large negative values of C1¢’ the perlod and

damping of each oscillation may be approximated by the one—degree—of—
freedom equations of motion in roll and yaw:

Rolll
e (Eubesze - %Czpr - Cz¢>¢ =0
where

qu).:_CnB
Thus it is seen that as Cl¢ increases negatively, the system acts as

if two independent mass—spring dashpot systems were in operation without .
any cross—coupling effects. The derivative Cz¢ acts in the capacity
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of a spring constant and the period, therefore, variles inversely with Cy,4.
A comparison of the results in table IL(b) for cnﬁ = 0.15 and Cng = 0.45

at CZ¢ = —0.05, —0.10, and —0.20 clearly shows that the oscillation
described by the rolling equation is approximately independent of CnB'
For small negative values of Cl¢’ the equations of motion for the three

degrees of freedom involved in lateral motion must be solved similtane—
ously to determine the period and damping of the modes of motion.

Thus an automatlc pllot sensitive to an angular displacement in roll
stabllizes the original unstable osclillation and introduces an additional
stable oscillatory mode with a shorter poriod than the original oscil—’
lation; however, throughout the range of Cz¢, the period and damping

relationship of at least one of these oscillations may be obJectionable
to the pilot.

Automatic Pilot Sensitive to Rate of Displacement

Another type of automatic pilot included in the Iinvestigation was
one sensitive to either the yawing or the rolling angular velocity. Rudder
control was asgsumed to be applied in proportion to the yawing angular
velocity, thereby increasing the damping in yaw derivative Cnr; whereas,

aileron control was assumed to be applied in proportlon to the rolling
angular velocity causing an increase in the damping—in—roll derivative Clp.
For both cases the stability equation is a guartlic and the necessary and
sufficlient conditions for neutral osclllatory stability are similar to
those conditlons described in the previous discussion of an automatic pilot
sensitive to roll.

Automatic pilot sensitive to yawing angular velocity.— Figure 4 shows
the neutral—oscillatory—stability boundaries Rp = 0, for CzB = -0.10,
—0.30, and -—0.50. The boundaries iIndicate that for certain values of Cnﬁ

oscilllatory stability is obtalned provided a definite lower limit of ACnr
is exceeded. However, as Lln,, 1s further increased, a critical value

1s reached beyond which the airplane is unstable. This result ia caused
by the fact that if the damping in yaw is made sufficiently large, the
alrplane motion in yaw is restricted. If the motion is then analyzed on
the assumptlon that only two degrees of freedom (roll and sideslip) remain,
osclllatory instabllity will occur for negative values of Cy (positive
effective dihedral). (See reference 3.) B

' The period and damping relationship for CZB = -0.10 and CnB = 0.15
for several values of Alp, are rresented in table IT(c). At point A in

figure 4, which corresponds to the airplane without an automatic pilot a
short—period unstable oscillation and two subsiding apsriodic modes are
obtained. When the derivative due to the automatic pilot ACp, is intro-
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duced or & shift from point A to point B occurs, the ingtability of the
short—périod oscillation is improved. Crossing through the boundary Ro =0

to point C causes the unstable short—period oscillation to become stable.
A heavily damped long—period oscillation which is formed from the combi—
nation of the two subsiding aperiodic modes also appsars for conditions
corresponding to point C. As ACp, 1s Increased negatively between
point C and point D, the period of the short—period oscillation increases
and the damping is improved; thereby greatly reducing the number of cycles
required to damp to half amplitude as expressed by the value of 01/2.

The effect of increasing ACnr negatively on the long—period oscillation

is to reduce the perliod and to decrease the damping. This oscillation
with a period of a&bout 7.5 seconds becomes unstable upon passing through
the boundary Rp = O to point D. For ACp, = —4k4.0, the roots of the

stability equation show that the steble osclllation breaks down into two
heavily damped subsiding aperiodic modes and the unsteble oscillation
becomes more unstable. Because of the comparatively long period of the
unstable osclllation, however, pilots might not find this type of insta-—
bility difficult to control.

Thus the results indicate that an automatic pilot sensitive to the
yawing angular velocity and geared to the rudder causes a marked improve—
ment in the original unstable short—period oscillation without introducing
any additlonal modes of motlon which might be objectionable to the pilot.

Automatic pillot sensitive to rolling angular veloclty.— The neutral—
osclllatory—atability boundary Ro = O for the alrplane equipped with

an automatic pllot sensitive to rolling angular velocity is presented in
figure 5 for several values of CzB. The boundaries indicate that oscil—

latory stability is obtained provided a deflnite lower limit'of AC,; 1s

exceeded. An examination of the period and damping of the oscillation,
presented in table IT(d) for CZB = —0.1 clearly shows that, although

the unstable short—period oscillation does become stable as ACZP is

increased negatively, any additional damping in roll introduced into the
system does not lmprove the damping of the osclllatlion sufficiently'to

result in a satisfactory damping and period relationship. The effect of
adding more Aczp Into the system is simply to increase the damping of

one of the subsiding aperiodic modes while causing a reduction in the
damping of the other subsiding aperiocdic mode. It 1s important to note

that for some alrplane configurations adding more dampling In roll into
the system willl cause the oeclllatory mode to becoms less stable.
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Effect of Automatic Stabilization on the Criterions for
Satlisfactory Damping—Period Relationship.
of the Oscillatory Mode

The curves that define the satlsfactory damping—period relationship
of the oscillatory mode as a function of the period are presented in
figure 6. The dashed curve represents the NACA criterion (reference T)
and the solid curve represents the military criterion (references 8 and 9).
Both curves agree very well with each other for perlods greater than
6 seconds whereas for periods from 0.8 to 6 seconds, the military criterion
1s more stringent than the NACA criterion. TFor periocds smaller than 0.8
of a second, the NACA criterion 1s more conservative than the military

criterion.

The relative merits of the several types of automatic pilots dis—
cussed in the present paper can be clearly seen by comparing the damping—
period relationship of the oscillatory mode, as affected by the particular
type of automatic pilot, with the criterions shown in figure 6. Curves

of 1 are presented as a function of the derivative introduced by the
Ci/e
auvtomatic pilot for an automatic pllot sensitive to either a displacement

in yaw or roll in figure 7 and for an automatic pilot sensitive to elther

the yawing or rolling angular velocity in figure 8. One curve of 5l7é
1

is presented for each of the automatic pilots investigated dempite the

Tact that two osclllatory modes may occur, since the airplane motion would
"be objectionable to the pilot if only one of the oscillatory modes does not
satisfy the criterlon for the damping—period relationship. An improvement
in the original damping—period relationship as each particular type of
automatic pilot is introduced is noted in figures 7 and 8 by the fact

that EiLE changes fiom a negative to a poslitive mign. For an automatlc

plilot sensitive to a displacement in.yaw (the solid curve in fig. T7) the

values of 6i55 correspond to points located in the umsatisfactory

region of figure 6 according to both criterions. For an automatic
pllot sensitive to a displacement in roll (the dashed curve in fig. T)
the oscillatory mode satisfies the NACA criterion for values of Cz¢

from —0.015 to —0.05. However, for the period of the oscillation during
this interval, which ranges from & period of 1.k to ab%Pt 2.5 seconds, the
military criterion is not satisfled. The values of Ei?E for the dashed

curve in figure 8, which corresponds to an automatic pilot sensitive to
the rolling angular velocity, indicate that neither one of the criterions
in figure 6 is satisfied. The solld curve in figure 8, which corresponds

to an automatic pilot sensitive to the yawing angular veloclty, shows
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that as Acnr increases negatively, the oscillatory mode satisfies the

NACA and military criterions.  An additional oscillatory mode exists
which also satisfies the criterions for the range of ACnr shown in the

figure. However, as ACn,. continues to Increase negatively to a value
of approximately —25.0, the value of C1/z becomes negative. (See
table II(c).)

Figures 7 and 8 indicate that for this hypothetical supersonic
airplane an automatic pllot sensitive to the yawing angular velocity,
which effectively increases the derivative Cnr’ is the most desirable

type of automatic pilot to be used to obtain a satisfactory damping—
period relationship of the osclllatory mode.

CONCLUSIGHNS

The following conclusions were drawn from a theoretical investi-—
gation carried out to determine the effect of automatic stabilization on
the lateral oscillatory stabllity of a hypothetical supersonic aircraft:

1. An automatic pllot sensitive to a displacemsnt in either yaw or
roll and an automatic pilot sensitive to either the yawing or rolling
angular veloclity lmproved the damping—period relationship of the original
unstable short—period oscillation.

2. The only one of the several types of automatic pilots investi-—
geted which resulted in an osclllatlion that satisfied the NACA and
military criterions for satisfactory damping—perlod relationship is an
automatic pllot sensitive to the yawing angular velocity and geared to
the rudder so that rudder control is gpplied in proportion to the angular
veloclty.

Langley Aeronautical ILaboratory
National Advisory Commlttee for Aeronautics
Langley Air Force Base, Va., December 9, 1948
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APPENDIX

DERIVATION OF THE NECESSARY AND SUFFICIENT CONDITIONS FOR
NEUTRAL OSCILLATORY STABILITY AND COMPLETE STABILITY
- OF THE QUINTIC EQUATION
By Leonard Sternfield and Ordway B. Gates, Jr.

The necessary and sufficilent conditions for neutral oscillatory
stability of the quintic equation are that the coefficients of the

stability equation
DS+t +O3+ M2+ EA+F =0 (A1)

satisfy Routh's discriminant set equal to zero
R, = (BC — AD)(DE — CF) — (BE — &F)° = 0

and that BC — AD and BE — AF have the same sign. The expression
for Ry =0 can be derived by assuming that the quintic equation has two
roots A = *iw, where o 1s the angular frequency of the neutrally stable
oscillation. This assumption is based on the fact that for the condition
of neutral oscillatory stabllity the real part of the complex rocot must
be zero. IPf A = im is substituted in the equation (Al) the following

two expreassions are obtalned:
Ad — Co3 + Eo =0 (A2)

Bot —Taf + F =0 (A3)

Solving equations (A2) and (A3) simultaneocusly, thereby eliminating the
mF terms, gives the expression

2 BE — AF
® "3 - (Ak)

Substituting equation (A4) into either equation (A2) or (A3) results in
Routhts discriminant

(BC—AD) (DE-CF) — (BE-AF)Z = 0O

It is seen from equation (Ak) that the expression
w =F¥i;ll§£
BC — AD
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defines the angular frequency of the neutrally stable oscillation. The
symbol ® represents the frequency of the neutrally stable oscillation
only 1f BC — AD and BE — AF are of the same sign, since o must have
a real value if the root 1B to represent an oscillation. If BC — AD
and BE — AF are of different sign and R} = 0 is satisfied, @ 18 an
imaginary quantity and the two roots of the quintic equation given

by A = tiw are two real roots equal in magnitude but opposite in sign.

The necessary and sufficient conditlcons for complete stabllity of
the quintic equation are derived in reference 4 and are presented in a
condensed form in reference 5. A much simpler method for obtalning
these same conditions is presented in the following analysis.

Assume that the quintic equation

AA5 + Bx,)‘L + Cx3 + sz +EL+F =0
has the roots
Xl=al+ibl —1
Ap =8 —iby
Az =ap + 1bp 5 (85)
My = 8 — 1by

Between the coefflcients and roots of the guintic equatlion the following
relationshlps exist:

’

A=1 ’ (a6a)
B = —2(&1 + 82) —_ 8.3 (A6b)
C =812 + b2 + a2 + bo2 + hajap + 2az(ay + ap) (ab6c)

()
[

= -2[&1(a22 + b22) + ap(ay2 + le)]
— a3 a12 + 8p® + b12 +_b22 + halag) (a64d)
E = (312 + b12><é22 + b22)

+ 2&3 [al (8/22 + b22) + ap a.12 + ble_)] (A68)

P, e e e e e et % e ——— e ——— - -- M 4 e—————— =
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F = —a3(a12 + b12>(&22 + b22) | | (46r)

The requirement for complete stabllity is that 8y, 89, and a3
be negative. Substitutlion of negative values of ays 8 , and a3 makes

all the coefficients positive; therefore, the first condition for
complete stability 1s that all coefficients be positive. From equation (A6f)
it can be seen that the F coefficient will be positive only when a3 is

negative. This first condition, therefore, only Ilnsures the stebllity
of the root 74,5 = a3. Additional requirements are needed to make a

and ap mnegative. On the boundary between stability and instability,
vhere a, = 0, the equations (A6) become

A=1 ‘ .
B = —2a; —a,

C = 812 + b12 + b22 + 28,38.1

D = —2a;b," — &y a2 +2 40 2) ’ (A7)
E = (22 + 5)2)np? + 2agab,?

F = —a3(a12 + 'D_-Le)’ba2

-

that is, five equations in the fowr variables a;s a3 s bl, and b2'
Eliminaticn of these variables leads to Routh!s discriminant

R, = (BC — AD)(DE — CF) — (BE — AF)2 = 0

which was derived by a much simpler procedure in the preceding analysis

of the conditions necessary for neutral oscillatory stabillity. It 1s
apparent that this discriminant can be equal to zero only if BC — AD

and DE — CF are of the same sign. When ap = 0 +the following relation—

ship can be obtained from equations (AT):
2 2 2 2
BC — 4D = —2a;(a;2 + ;2 + b;2) - bagay

Since a3 mist be negative if all coefficlents are positive, BC — AD
mst be posltive 1f ay is negative. Therefore, DE — CF must also be
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positlve if the discriminant is to be equal to zero, which implies
that BC>AD and DE>CF. Then € >4 gng ¢ <&, also E> D,
therefore,

BE — AF > O (48)

Thus, for complete stabllity a second necessary condition i1s that BE — AF
mist be greater than zero.

It can be shown from the simultaneous solution of equations (AT),
where a, = 0, that

BE — AF = —-eal[E + (B + aale)bz]

Since the terms within the bracket are all positive, BE — AF > 0 1if,
and only 1f, a; 18 negative. Thils verifies the correctness of

equation (A8).

In order to determine the slgn of Routh's discriminant for a condi-
tion of complete stabllity, it 18 only necessary to substitute the roots
of a completely stable case into equations (A6) and form the discriminant.
This substitutlion establishes the criterion that for complete stability

Ry = (BC — AD)(DE — CF) — (BE — AF)2>0 (49)

In summary, the necessary and sufficient conditions for complete
gtability of the quintic equation are that all coefficlents must be
positive, BE — AF > O, and Routh's discriminant must be positive. The
‘conditions obtalned as a result of this analysis agree with the conditions
as presented 1n reference 5. The condltlons stated in reference 5 are
entlirely adequate although they do not specifically state that the coeffi-
clents C and E must be poesltive, since the condlition that BE — AF
mist be greater than zero inherently demands that these two coefficients
be posltlive as 18 evident from the derivation of this condition in the

preceding analysis.

o — ————— e e~
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TABLE I.— STABILITY DERIVATIVES AND MASS CHARACTERISTICS

OF HYPOTHETICAL ATRPLANE IN CRUISING
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Cnr’Perradian-o-co-ooaclaco

Cyp,perradian.........o....
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Ong(tat1)’
C'[,B,perradian..............
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e & o s @
* » o o o
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CONDITION

23

* L] )"‘o
. . 20
0.0002
. 1465
L ] L] 0

0.372

., . 620

o 2.02

. 9.64

L] L] O
-0.197
0.0929

e « « o =0.00732
.47 an(tail)

L] o L[] L] L]

—1.33 C,

e« O
e ® 0

B(tail)
~0.25

+ o+ o o o Variable

Cng = Cng(ruselage)

e ¢« o o o s o« o s o Variable

“‘ﬂ‘g’F’



2k

NACA TN No.

TABLE IT.— PERIOD AND DAMPING OF THE OSCILLATORY MODES

AND DAMPING OF THE APERTODIC MODES

[CZB = —0.1]

(a) Automatic Pilot Sensitive to Displacement in Yaw

Points| Cng| Cny g%r O;Cilla;zz mo(cizz /2 APE%%; °
3.62| —7.69 —2.11| o0.827

Ajoasio o T YT
B 15 | —.002 | .02 {jg:gl 2;?:38 f:ig e
c .15 | —.0035| .035 15;;21 _85;(:?,7 _;§:§° o
> | as|os |1 Lﬁ:? AR
B | .a5|-as |15 |[2r8] 330.0 11260 1 60
o R o B A N

15 [~.k0 | k.0 {5;22 ES:;(Q li:glu i
1.95| 11.6 5.95| 1.06

s A {:::::.::::::: B -

] B R 1 vt ol el

.55 | —0035| w035\ & 8| emmre |20 | L%
55|~ |2 | 25a| 2 L

55 |-10 [0 ([ 50| 2:5e 2% 2P

-55 | =20 |2.0 {l%:;o gs| 2o L2

s b0 fwo {520 39| &5y

1818
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TABLE ITI.— Continued

(b) Antomatic Pilot Semsitive to Displacement in Roll

3% Oscillatory mode Aperiodic
Points CDB Cz¢ & mode
of PoITip | G| mp
3.62 | —7.65| —2.11 0.827
A 0.15 | 0 L Rl T s P 32.7
3.15 | -9.24}| 2,93 | =====~
B 15 | —.008| .08 h.lg 1.68| .ko1| ------
2.5 9.76| 3.81 | «==eun
c A5 | -.012] .12 3.76 2.57 68| memaee
2.07 | 3.30| 1.59 | ==~=---
15 | —.022 .22 3.76 5.2 1.4 | ~eeeaa
1.37 2.69| 1.96 | ~~==--
«15 | =050 .50 3.76 | 8.66| 2.30 | =~=---
{'967 205)4' 2-63 -----
15 | =10 | 1.0 3.76.| 10.70| 2.85 | -~----
681 2.481 3.64 | ~==me-
.15 | =20 | 2.0 {3,76 11.70| 3.11 | =~==-=-
2.16 | 18.70| 8.66 1.03
L4510 0 | l=ssosfmmmmme fomeeeae 53.30
2.14 1102.0 | 47.70 | ==-=--
A5 —.008 .08 {3.5]_ 1.87 +533 | =====-
2,13 (-40.80}19.20 | ====-=
A5 | —012] .12 2.87 1.75 I3 R
1.99 {106.60| 53.80 | =~==w-
A5 | —022) .22 2.25 1.86 827} —memae
1.53 3.03| 1.98 | =~=e--
A5 1 —oko) w0 [12.16 | i.6b 2,15 | ==em--
. 1-37 2.82 2.06 -----
A5 | =050 .50 [12.17 | s5.23( 2.81 | cooem-
{.964 2.56 | 2.66 { ~~==--
45 | —.100]| 1.0 2.17 | 6.47| 2.98 | =mmen-
6791 2.49( 3.67 | —-n---
45 | —.200! 2.0 {é.l? 6.99| 3.22 | wee--o

25
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TABLE TT.— Continued

(¢) Automatic Pilot Semnsitive to Yawing Anguler Velocity

% Oscilllatory mode Aperiodic
Cag | ACn. | ZE mode
Fointe g i Y P Tife | C1/e Ty /2
62 1. -2.11 0.82
A 0.15 | © 0 {..?.f.- 165 | 2L 32.707
66 | —14.96 | 4.0 .86
B ‘15 e 733 005 {.—3- ------- ? ------ ? - n.603
3.84 4.38 1.1 | --mee-
C -15 —11-.)-1-0 030 {179-90 1.51 0081,_ ------
k.13 2.11 511 | ==
15| 733 50 Tu6.00| 1.5 | .0906| =--==-

015 _14070 loo 7:,4.3 3:)4.)_" :h’63 ------

15 [-20.50 | 1.k | {742 | 17.20 | 2.32 | ==----

.5k .356 .0373] ====°7

D .15 |-25.40 1.73 ?(15;5 —33.30 -u.u% -----
-------------------- 483

.15 |~4k.0 3.0 {7.&9 -4.95 | -.661 135
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(4) Automatic Pilot Sensitive to Rolling Angular Velocity

TABIE IT.— Concluded

- ———

, By | Oscillatory mode Aperiodic
CnB ACZP -ga— mode
P lmp |G| mp
3.62{ —7.65 | 2.11| 0.1
0.15| © 0 el EEEEELIN BES T 32-707
: .59|-20.90 | -5.82 .3k
151 044 | .03 {3--- R 2 79.§ro5
3.63| 39.40 | 10.90 L
A5 | —1.17 .07 {---- ----------- 157-5'(§2
.6 26. 0 '26 .
,+15 —1.47 .10 §--? ----?- -:(--- 189.11;152
.71] 14.70 .96 .052
A5 | —%.k0 .30 §--- ————- -i?— 501.63
3.72] 13.90 3.7Th .032
15| —7.33 | .50 {---- -------- 815'5(3)
| 3.74| 13.50 | 3.58 .016
A5 F1TO | 1.0 | |emme |mmmcme | mmeee 1593.0
%

a7
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Figure 2.— Bffect of C,. on the leteral oscillatory stability.
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